Wednesday, March 7, 2007

Arc Welding Processes

One of the most common types of arc welding is shielded metal arc welding (SMAW), which is also known as manual metal arc welding (MMA) or stick welding. Electric current is used to strike an arc between the base material and consumable electrode rod, which is made of steel and is covered with a flux that protects the weld area from oxidation and contamination by producing CO2 gas during the welding process. The electrode core itself acts as filler material, making a separate filler unnecessary.

The process is versatile and can be performed with relatively inexpensive equipment, making it well suited to shop jobs and field work. An operator can become reasonably proficient with a modest amount of training and can achieve mastery with experience. Weld times are rather slow, since the consumable electrodes must be frequently replaced and because slag, the residue from the flux, must be chipped away after welding.[16] Furthermore, the process is generally limited to welding ferrous materials, though speciality electrodes have made possible the welding of cast iron, nickel, aluminium, copper, and other metals. Inexperienced operators may find it difficult to make good out-of-position welds with this process.

Gas metal arc welding (GMAW), also known as metal inert gas or MIG welding, is a semi-automatic or automatic process that uses a continuous wire feed as an electrode and an inert or semi-inert gas mixture to protect the weld from contamination. As with SMAW, reasonable operator proficiency can be achieved with modest training. Since the electrode is continuous, welding speeds are greater for GMAW than for SMAW. Also, the smaller arc size compared to the shielded metal arc welding process makes it easier to make out-of-position welds (e.g., overhead joints, as would be welded underneath a structure).

The equipment required to perform the GMAW process is more complex and expensive than that required for SMAW, and requires a more complex setup procedure. Therefore, GMAW is less portable and versatile, and due to the use of a separate shielding gas, is not particularly suitable for outdoor work. However, owing to the higher average rate at which welds can be completed, GMAW is well suited to production welding. The process can be applied to a wide variety of metals, both ferrous and non-ferrous.

A related process, flux-cored arc welding (FCAW), uses similar equipment but uses wire consisting of a steel electrode surrounding a powder fill material. This cored wire is more expensive than the standard solid wire and can generate fumes and/or slag, but it permits even higher welding speed and greater metal penetration.

Gas tungsten arc welding (GTAW), or tungsten inert gas (TIG) welding (also sometimes erroneously referred to as heliarc welding), is a manual welding process that uses a nonconsumable tungsten electrode, an inert or semi-inert gas mixture, and a separate filler material. Especially useful for welding thin materials, this method is characterized by a stable arc and high quality welds, but it requires significant operator skill and can only be accomplished at relatively low speeds.

GTAW can be used on nearly all weldable metals, though it is most often applied to stainless steel and light metals. It is often used when quality welds are extremely important, such as in bicycle, aircraft and naval applications.[19] A related process, plasma arc welding, also uses a tungsten electrode but uses plasma gas to make the arc. The arc is more concentrated than the GTAW arc, making transverse control more critical and thus generally restricting the technique to a mechanized process. Because of its stable current, the method can be used on a wider range of material thicknesses than can the GTAW process, and furthermore, it is much faster. It can be applied to all of the same materials as GTAW except magnesium, and automated welding of stainless steel is one important application of the process. A variation of the process is plasma cutting, an efficient steel cutting process.

Submerged arc welding (SAW) is a high-productivity welding method in which the arc is struck beneath a covering layer of flux. This increases arc quality, since contaminants in the atmosphere are blocked by the flux. The slag that forms on the weld generally comes off by itself, and combined with the use of a continuous wire feed, the weld deposition rate is high. Working conditions are much improved over other arc welding processes, since the flux hides the arc and almost no smoke is produced. The process is commonly used in industry, especially for large products and in the manufacture of welded pressure vessels. Other arc welding processes include atomic hydrogen welding, carbon arc welding, electroslag welding, electrogas welding, and stud arc welding.

Labels:

Non-consumable electrode methods (arc welding)

Gas tungsten arc welding (GTAW), or tungsten inert gas (TIG) welding, is a manual welding process that uses a non-consumable electrode made of tungsten, an inert or semi-inert gas mixture, and a separate filler material. Especially useful for welding thin materials, this method is characterized by a stable arc and high quality welds, but it requires significant operator skill and can only be accomplished at relatively low speeds. It can be used on nearly all weldable metals, though it is most often applied to stainless steel and light metals. It is often used when quality welds are extremely important, such as in bicycle, aircraft and naval applications. A related process, plasma arc welding, also uses a tungsten electrode but uses plasma gas to make the arc. The arc is more concentrated than the GTAW arc, making transverse control more critical and thus generally restricting the technique to a mechanized process. Because of its stable current, the method can be used on a wider range of material thicknesses than can the GTAW process and is much faster. It can be applied to all of the same materials as GTAW except magnesium; automated welding of stainless steel is one important application of the process. A variation of the process is plasma cutting, an efficient steel cutting process.

Other arc welding processes include atomic hydrogen welding, carbon arc welding, electroslag welding, electrogas welding, and stud arc welding.

Labels:

Consumable electrode methods (Arc Welding)

One of the most common types of arc welding is shielded metal arc welding (SMAW), which is also known as manual metal arc welding (MMA) or stick welding. An electric current is used to strike an arc between the base material and a consumable electrode rod or 'stick'. The electrode rod is made of a material that is compatible with the base material being welded and is covered with a flux that protects the weld area from oxidation and contamination by producing CO2 gas during the welding process. The electrode core itself acts as filler material, making a separate filler unnecessary. The process is very versatile, requiring little operator training and inexpensive equipment. However, weld times are rather slow, since the consumable electrodes must be frequently replaced and because slag, the residue from the flux, must be chipped away after welding. Furthermore, the process is generally limited to welding ferrous materials, though specialty electrodes have made possible the welding of cast iron, nickel, aluminium, copper and other metals. The versatility of the method makes it popular in a number of applications including repair work and construction.

Gas metal arc welding (GMAW) is a semi-automatic or automatic welding process that uses a continuous wire feed as an electrode and an inert or semi-inert shielding gas to protect the weld from contamination. When using an inert gas as shield it is known as Metal Inert Gas (MIG) welding. A constant voltage, direct current power source is most commonly used with GMAW, but constant current systems as well as alternating current can be used. GMAW welding speeds are relatively high due to the automatically fed continuous electrode, but is less versatile because it requires more equipment than the simpler SMAW process. Originally developed for welding aluminium and other non-ferrous materials in the 1940s, GMAW was soon applied to steels because it allowed for lower welding time compared to other welding processes. Today, GMAW is commonly used in industries such as the automobile industry, where it is preferred for its versatility and speed. However, because it employs a shielding gas, it is rarely used outdoors or in areas of air volatility.

A related process, flux-cored arc welding (FCAW), uses similar equipment but uses wire consisting of a steel electrode tube surrounding a powder fill material. This cored wire is more expensive than the standard solid wire and generates extra shielding gas and/or slag, but it permits higher welding speed and greater metal penetration.

Submerged arc welding (SAW) is a high-productivity automatic welding method in which the arc is struck beneath a covering layer of flux. This increases arc quality, since contaminants in the atmosphere are blocked by the flux. The slag that forms on the weld generally comes off by itself and, combined with the use of a continuous wire feed, the weld deposition rate is high. Working conditions are much improved over other arc welding processes since the flux hides the arc and no smoke is produced. The process is commonly used in industry, especially for large products. As the arc is not visible, it requires full automatization. In-position welding is not possible with SAW.

Labels:

Arc Welding Power supplies


To supply the electrical energy necessary for arc welding processes, a number of different power supplies can be used. The most common classification is constant current power supplies and constant voltage power supplies. In arc welding, the voltage is directly related to the length of the arc, and the current is related to the amount of heat input. Constant current power supplies are most often used for manual welding processes such as gas tungsten arc welding and shielded metal arc welding, because they maintain a relatively constant current even as the voltage varies. This is important because in manual welding, it can be difficult to hold the electrode perfectly steady, and as a result, the arc length and thus voltage tend to fluctuate. Constant voltage power supplies hold the voltage constant and vary the current, and as a result, are most often used for automated welding processes such as gas metal arc welding, flux cored arc welding, and submerged arc welding. In these processes, arc length is kept constant, since any fluctuation in the distance between the wire and the base material is quickly rectified by a large change in current. For example, if the wire and the base material get too close, the current will rapidly increase, which in turn causes the heat to increase and the tip of the wire to melt, returning it to its original separation distance.

The direction of current used in arc welding also plays an important role in welding. Consumable electrode processes such as shielded metal arc welding and gas metal arc welding generally use direct current, but the electrode can be charged either positively or negatively. In welding, the positively charged anode will have a greater heat concentration and, as a result, changing the polarity of the electrode has an impact on weld properties. If the electrode is positively charged, it will melt more quickly, increasing weld penetration and welding speed. Alternatively, a negatively charged electrode results in more shallow welds. Non-consumable electrode processes, such as gas tungsten arc welding, can use either type of direct current, as well as alternating current. With direct current however, because the electrode only creates the arc and does not provide filler material, a positively charged electrode causes shallow welds, while a negatively charged electrode makes deeper welds. Alternating current rapidly moves between these two, resulting in medium-penetration welds. One disadvantage of AC, the fact that the arc must be re-ignited after every zero crossing, has been addressed with the invention of special power units that produce a square wave pattern instead of the normal sine wave, eliminating low-voltage time after the zero crossings and minimizing the effects of the problem.

Labels:

Arc welding

Arc welding uses a welding power supply to create an electric arc between an electrode and the base material to melt the metals at the welding point. They can use either direct (DC) or alternating (AC) current, and consumable or non-consumable electrodes. The welding region is sometimes protected by some type of inert or semi-inert gas, known as a shielding gas, and/or an evaporating filler material. The process of arc welding is widely used because of its low capital and running costs.



Development

While examples of forge welding go back to the Bronze Age and the Iron Age, arc welding did not come into practice until much later. In 1800, Humphry Davy discovered the electric arc, initiating the development of arc welding which continued with the inventions of metal electrodes by a Russian (N.G. Slavianoff) and an American (C.L. Coffin) in the late 1800s even as carbon arc welding, which used a carbon electrode, gained popularity. Around 1900, A. P. Strohmenger released in Britain a coated metal electrode which gave a more stable arc. In 1919, alternating current welding was invented by C.J. Holslag but did not become popular for another decade.

Competing welding processes such as resistance welding and oxyfuel welding were developed during this time as well, but both, especially the latter, faced stiff competition from arc welding especially after metal coverings (known as flux) for the electrode, to stabilize the arc and shield the base material from impurities, continued to be developed. During the surge in the use of welding caused by World War I, arc welding become even more popular as the British constructed a ship, the Fulagar, with an entirely welded hull. The Americans also became more accepting of the new technology when the process allowed them to repair their ships quickly after a German attack in the New York Harbor at the beginning of the war. Arc welding was first applied to aircraft during the war as well, and some German airplane fuselages were constructed using this process.

During the 1920s, major advances were made in welding technology, including the 1920 introduction of automatic welding in which electrode wire was continuously fed. Shielding gas became a subject receiving much attention as scientists attempted to protect welds from the effects of oxygen and nitrogen in the atmosphere. Porosity and brittleness were the primary problems and the solutions that developed included the use of hydrogen, argon, and helium as welding atmospheres. During the following decade, further advances allowed for the welding of reactive metals such as aluminum and magnesium. This, in conjunction with developments in automatic welding, alternating current, and fluxes fed a major expansion of arc welding during the 1930s and then during World War II.

During the middle of the century, many new welding methods were invented. Submerged arc welding was invented in 1930 and continues to be popular today. Gas tungsten arc welding, after decades of development, was finally perfected in 1941 and gas metal arc welding followed in 1948, allowing for fast welding of non-ferrous materials but requiring expensive shielding gases. Using a consumable electrode and a carbon dioxide atmosphere as a shielding gas, it quickly became the most popular metal arc welding process. In 1957, the flux-cored arc welding process debuted in which the self-shielded wire electrode could be used with automatic equipment, resulting in greatly increased welding speeds. In that same year, plasma arc welding was invented. Electroslag welding was released in 1958 and was followed by its cousin, electrogas welding, in 1961.

Labels:

Arc Welding Safety issues

Welding, without the proper precautions, can be a dangerous and unhealthy practice. However, with the use of new technology and proper protection, the risks of injury and death associated with welding can be greatly reduced. Because many common welding procedures involve an open electric arc or flame, the risk of burns is significant. To prevent them, welders wear protective clothing in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat, flames, and sparks. Additionally, the brightness of the weld area leads to a condition called arc eye in which ultraviolet light causes the inflammation of the cornea and can burn the retinas of the eyes. Goggles and helmets with dark face plates are worn to prevent this exposure and, in recent years, new helmet models have been produced featuring a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, transparent welding curtains often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield nearby workers from exposure to the UV light from the electric arc, but should not be used to replace the filter glass used in helmets.

Welders are also often exposed to dangerous gases and particulate matter. Processes like flux-cored arc welding and shielded metal arc welding produce smoke containing particles of various types of oxides. The size of the particles in question tends to influence the toxicity of the fumes, with smaller particles presenting a greater danger. Additionally, many processes produce various gases (most commonly carbon dioxide and ozone, but others as well) that can prove dangerous if ventilation is inadequate. Furthermore, the use of compressed gases and flames in many welding processes pose an explosion and fire risk; some common precautions include limiting the amount of oxygen in the air and keeping combustible materials away from the workplace.

Labels:

Arc Welding Corrosion issues

Some materials, notably high-strength steels, aluminium, and titanium alloys, are susceptible to hydrogen embrittlement. If the electrodes used for welding contain traces of moisture, the water decomposes in the heat of the arc and the liberated hydrogen enters the lattice of the material, causing its brittleness. Electrodes for such materials, with special low-hydrogen coating, are delivered in sealed moisture-proof packagings. New electrodes can be used straight from the can, but when moisture absorption may be suspected, they have to be dried by baking (usually at 800-1000 °F) in a drying oven. Flux used has to be kept very dry as well.

Some austenitic stainless steels and nickel-based alloys are prone to intergranular corrosion. When subjected to temperatures around 700 °C for too long time, chromium reacts with carbon in the material, forming chromium carbide and depleting the crystal edges of chromium, impairing their corrosion resistance in a process called sensitization. Such sensitized steel undergoes corrosion in the areas near the welds where the temperature-time was favorable for forming the carbide. This kind of corrosion is often termed weld decay.

Knifeline attack (KLA) is another kind of corrosion affecting welds, impacting steels stabilized by niobium. Niobium and niobium carbide dissolves in steel at very high temperatures. At some cooling regimes, niobium carbide does not precipitate, and the steel then behaves like unstabilized steel, forming chromium carbide instead. This affects only a thin zone several millimeters wide in the very vicinity of the weld, making it difficult to spot and increasing the corrosion speed. Structures made of such steels have to be heated in a whole to about 1950 °F, when the chromium carbide dissolves and niobium carbide forms. The cooling rate after this treatment is not important.

Filler metal (electrode material) improperly chosen for the environmental conditions the finished parts will be subjected to can make them corrosion-sensitive as well. There are also issues of galvanic corrosion if the electrode composition is sufficiently dissimilar to the materials welded, or the materials are dissimilar themselves. Even between different grades of nickel-based stainless steels, corrosion of welded joints can be severe, despite that they rarely undergo galvanic corrosion when mechanically joined.

Labels:

History of Welding

The history of joining metals goes back several millennia, with the earliest examples of welding from the Bronze Age and the Iron Age in Europe and the Middle East. Welding was used in the construction of the Iron pillar in Delhi, India, erected about 310 and weighing 5.4 metric tons. The Middle Ages brought advances in forge welding, in which blacksmiths pounded heated metal repeatedly until bonding occurred. In 1540, Vannoccio Biringuccio published De la pirotechnia, which includes descriptions of the forging operation. Renaissance craftsmen were skilled in the process, and the industry continued to grow during the following centuries. Welding, however, was transformed during the 19th century—in 1800, Sir Humphry Davy discovered the electric arc, and advances in arc welding continued with the inventions of metal electrodes by a Russian, Nikolai Slavyanov, and an American, C.L. Coffin in the late 1800s, even as carbon arc welding, which used a carbon electrode, gained popularity. Around 1900, A. P. Strohmenger released a coated metal electrode in Britain, which gave a more stable arc, and in 1919, alternating current welding was invented by C.J. Holslag, but did not become popular for another decade.

Resistance welding was also developed during the final decades of the 19th century, with the first patents going to Elihu Thomson in 1885, who produced further advances over the next 15 years. Thermite welding was invented in 1893, and around that time, another process, oxyfuel welding, became well established. Acetylene was discovered in 1836 by Edmund Davy, but its use was not practical in welding until about 1900, when a suitable blowtorch was developed. At first, oxyfuel welding was one of the more popular welding methods due to its portability and relatively low cost. As the 20th century progressed, however, it fell out of favor for industrial applications. It was largely replaced with arc welding, as metal coverings (known as flux) for the electrode that stabilize the arc and shield the base material from impurities continued to be developed.

World War I caused a major surge in the use of welding processes, with the various military powers attempting to determine which of the several new welding processes would be best. The British primarily used arc welding, even constructing a ship, the Fulagar, with an entirely welded hull. The Americans were more hesitant, but began to recognize the benefits of arc welding when the process allowed them to repair their ships quickly after German attacks in the New York Harbor at the beginning of the war. Arc welding was first applied to aircraft during the war as well, as some German airplane fuselages were constructed using the process.

During the 1920s, major advances were made in welding technology, including the introduction of automatic welding in 1920, in which electrode wire was fed continuously. Shielding gas became a subject receiving much attention, as scientists attempted to protect welds from the effects of oxygen and nitrogen in the atmosphere. Porosity and brittleness were the primary problems, and the solutions that developed included the use of hydrogen, argon, and helium as welding atmospheres. During the following decade, further advances allowed for the welding of reactive metals like aluminum and magnesium. This, in conjunction with developments in automatic welding, alternating current, and fluxes fed a major expansion of arc welding during the 1930s and then during World War II.

During the middle of the century, many new welding methods were invented. 1930 saw the release of stud welding, which soon became popular in shipbuilding and construction. Submerged arc welding was invented the same year, and continues to be popular today. Gas tungsten arc welding, after decades of development, was finally perfected in 1941, and gas metal arc welding followed in 1948, allowing for fast welding of non-ferrous materials but requiring expensive shielding gases. Shielded metal arc welding was developed during the 1950s, using a consumable electrode and a carbon dioxide atmosphere as a shielding gas, and it quickly became the most popular metal arc welding process. In 1957, the flux-cored arc welding process debuted, in which the self-shielded wire electrode could be used with automatic equipment, resulting in greatly increased welding speeds, and that same year, plasma arc welding was invented. Electroslag welding was introduced in 1958, and it was followed by its cousin, electrogas welding, in 1961.

Other recent developments in welding include the 1958 breakthrough of electron beam welding, making deep and narrow welding possible through the concentrated heat source. Following the invention of the laser in 1960, laser beam welding debuted several decades later, and has proved to be especially useful in high-speed, automated welding. Both of these processes, however, continue to be quite expensive due the high cost of the necessary equipment, and this has limited their applications.

Labels:

Welding

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld puddle) that cools to become a strong joint, but sometimes pressure is used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces.

Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding can be done in many different environments, including open air, underwater and in space. Regardless of location, however, welding remains dangerous, and precautions must be taken to avoid burns, electric shock, poisonous fumes, and overexposure to ultraviolet light.

Until the end of the 19th century, the only welding process was forge welding, which blacksmiths had used for centuries to join metals by heating and pounding them. Arc welding and oxyfuel welding were among the first processes to develop late in the century, and resistance welding followed soon after. Welding technology advanced quickly during the early 20th century as World War I and World War II drove the demand for reliable and inexpensive joining methods. Following the wars, several modern welding techniques were developed, including manual methods like shielded metal arc welding, now one of the most popular welding methods, as well as semi-automatic and automatic processes such as gas metal arc welding, submerged arc welding, flux-cored arc welding and electroslag welding. Developments continued with the invention of laser beam welding and electron beam welding in the latter half of the century. Today, the science continues to advance. Robot welding is becoming more commonplace in industrial settings, and researchers continue to develop new welding methods and gain greater understanding of weld quality and properties.

Labels:

Scheduling (production processes)

Scheduling is an important tool for manufacturing and engineering, where it can have a major impact on the productivity of a process. In manufacturing, the purpose of scheduling is to minimize the production time and costs, by telling a production facility what to make, when, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce costs.


Production scheduling tools greatly outperform older manual scheduling methods. This provides the production scheduler with powerful graphical interfaces which can be used to visually optimize real-time work loads in various stages of the production, and pattern recognition allows the software to automatically create scheduling opportunities which might not be apparent without this view into the data. For example, an airline might wish to minimize the number of airport gates required for its aircraft, in order to reduce costs, and scheduling software can allow the planners to see how this can be done, by analyzing time tables, aircraft usage, or the flow of passengers.

Companies use backward and forward scheduling to allocate plant and machinery resources, plan human resources, plan production processes and purchase materials.

Forward scheduling is planning the tasks from the date resources become available to determine the shipping date or the due date.

Backward scheduling is planning the tasks from the due date or required-by date to detemine the start date and/or any changes in capacity required.


The benefits of production scheduling include:

* Process change-over reduction
* Inventory reduction, leveling
* Reduced scheduling effort
* Increased production efficiency
* Labor load leveling
* Accurate delivery date quotes
* Real time information


Scheduling Algorithms

Production scheduling can take a significant amount of computing power if there are a large number of tasks. Therefore a range of short-cut algorithms (Heuristic) are used:

* Modified Due Date Scheduling Heuristic
* Shortest Processing Time Scheduling Heuristic
* Earliest Due Date Scheduling Heuristic
* GreedyET Scheduling Heuristic

Labels:

Manufacturing Process Management

Manufacturing Process Management (MPM) is a collection of technology and methods used in the manufacture of products. It incorporates such technologies as computer-aided production engineering (CAPE), Advanced Planning & Scheduling (APS) , computer-aided manufacturing (CAM), Manufacturing Execution System (MES) , computer-aided quality assurance (CAQ), the utilization of CAD and AEC tools for factory layout and digital mockup (DMU) and simulation for assembly analysis. As the digital manufacturing part of the PLM process it is the bridge from product design to production planning and on to resource and inventory scheduling. As CAD defines what is to be made; and ERP/MRP defines when it is to be made; MPM defines how it will be made.

A cornerstone of MPM is the central repository for manufacturing data management (MDM) similar to PDM for design data. MPM takes the product data eBOM (engineering Bill of Material) to create the process oriented mBOM (manufacturing) along with a bill of process (BOP). This together with the management of resources such as tools, machines and work centers forms the so called 3PR data (product process plant resources).

The integration of all these tools and activities aids in the exploration of alternative production line scenarios; making assembly lines more efficient with the aim of reduced lead time to product launch, shorter product times and reduced work in progress (WIP) inventories as well as allowing rapid response to product or product changes.


Topics and technology

* Production process planning
o Manufacturing concept planning
o Factory layout planning and analysis
+ work flow simulation.
+ walk-path assembly planning
+ plant design optimization
o Mixed model line balancing.
o Workloads on multiple stations.
o Process simulation tools e.g. die press lines, manufacturing lines
o Ergonomic simulation and assessment of production assembly tasks
o Resource planning

* Computer-aided manufacturing (CAM)
o Numerical control CNC
o Direct Numerical Control (DNC)
o Tooling/equipment/fixtures development
o Tooling and Robot work-cell setup and offline programming (OLP)

* Generation of shop floor work instructions

* Time and cost estimates
o ABC - Manufacturing activity-based costing
o Production, costs, and pricing

* Quality Computer-aided quality assurance (CAQ)
o FMEA Failure mode and effects analysis
o SPC Statistical process control
o Computer aided inspection with coordinate-measuring machine (CMM)
o Tolerance stack-up analysis using PMI models.

* Communication with other systems
o Enterprise resource planning (ERP)
o Product Data Management (PDM)
o SCADA (Supervisory Control and Data Acquisition) real time process monitoring and control
o Human-machine interface (HMI)
o Distributed control system (DCS)

Labels:

Manufacturing

Manufacturing, a branch of industry, is the application of tools and a processing medium to the transformation of raw materials into finished goods for sale. This effort includes all intermediate processes required for the production and integration of a product's components. Some industries, such as semiconductor and steel manufacturers use the term fabrication instead. The manufacturing sector is closely connected with engineering.

According to some economists, manufacturing is a wealth producing sector of an economy, whereas a service sector tends to be wealth consuming. Emerging technologies have provided some new growth in advanced manufacturing employment opportunities in the Manufacturing Belt in the United States. Manufacturing provides important material support for national infrastructure and for national defense.

On the other hand, some manufacturing may involve significant social and environmental costs. The clean-up costs of hazardous waste, for example, may outweigh the benefits. Hazardous materials may expose workers to health risks. Developed countries regulate manufacturing activity with labor laws and environmental laws. In the United States, manufacturers are subject to regulations by the Occupational Safety and Health Administration and the Environmental Protection Agency In Europe, pollution taxes to offset environmental costs are another form of regulation on manufacturing activity. Labor Unions and craft guilds have played a historic role negotiation of worker rights and wages. Environment laws and labor protections that are available in developed nations may not be available in the third world. Tort law and product liability impose additional costs on manufacturing.

Examples of major manufacturers in the United States include General Motors Corporation, Ford Motor Company, Chrysler, Boeing, Gates Rubber Company and Pfizer. Examples in Europe include France's Airbus and Michelin Tire. Modern proponents of Fair Trade policy and a strong manufacturing base for the U.S. economy include economists like Paul Craig Roberts, Ravi Batra, and Lou Dobbs.